langtest.utils.custom_types.sample.ToxicitySample#
- class ToxicitySample(*, prompt: str, completion: str = None, prompt_toxicity: str | List = None, completion_toxicity: str = None, state: str = None, dataset_name: str = None, task: str = 'toxicity', category: str = None, test_type: str = None)#
Bases:
BaseModel
A class Representing a sample for toxicity task.
- prompt#
The prompt text.
- Type:
str
- completion#
The completion text.
- Type:
str
- prompt_toxicity#
The toxicity of the prompt text.
- Type:
Union[str, List]
- completion_toxicity#
The toxicity of the completion text.
- Type:
str
- state#
The state of the sample.
- Type:
str
- dataset_name#
The name of the dataset the sample belongs to.
- Type:
str
- task#
The task associated with the sample.
- Type:
str
- category#
The category of the sample.
- Type:
str
- test_type#
The type of test the sample belongs to.
- Type:
str
- __init__(**data)#
Constructor method
Methods
__init__
(**data)Constructor method
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_orm
(obj)is_pass
()Checks if the sample passes based on the maximum score.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])run
(model, **kwargs)Runs the original and perturbed sentences through the model
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])to_dict
()Converts the ToxicitySample object to a dictionary.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Attributes
- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns:
new model instance
- dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- is_pass() bool #
Checks if the sample passes based on the maximum score.
- json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- run(model, **kwargs)#
Runs the original and perturbed sentences through the model
- to_dict() Dict[str, Any] #
Converts the ToxicitySample object to a dictionary.
- Returns:
A dictionary representation of the ToxicitySample object.
- Return type:
Dict[str, Any]