langtest.transform.fairness.BaseFairness#
- class BaseFairness#
Bases:
ABC
Abstract base class for implementing accuracy measures.
- alias_name#
A name or list of names that identify the accuracy measure.
- Type:
str
- transform(data
List[Sample], params: Dict) -> Union[List[MinScoreSample], List[MaxScoreSample]]: Transforms the input data into an output based on the implemented accuracy measure.
- __init__()#
Methods
__init__
()async_run
(sample_list, model, **kwargs)Creates a task for the run method.
run
(sample_list, categorised_data, **kwargs)Computes the score for the given data.
transform
(data, params)Abstract method that implements the computation of the given measure.
Attributes
supported_tasks
test_types
- async classmethod async_run(sample_list: List[Sample], model: ModelAPI, **kwargs)#
Creates a task for the run method.
- Parameters:
sample_list (List[Sample]) – The input data to be transformed.
model (ModelAPI) – The model to be used for the computation.
- Returns:
The task for the run method.
- Return type:
asyncio.Task
- abstract async static run(sample_list: List[MinScoreSample], categorised_data, **kwargs) List[Sample] #
Computes the score for the given data.
- Parameters:
sample_list (List[MinScoreSample]) – The input data to be transformed.
model (ModelAPI) – The model to be used for the computation.
- Returns:
The transformed samples.
- Return type:
List[MinScoreSample]
- abstract static transform(data: List[Sample], params: Dict) List[MinScoreSample] | List[MaxScoreSample] #
Abstract method that implements the computation of the given measure.
- Parameters:
data (List[Sample]) – The input data to be transformed.
params (Dict) – parameters for tests configuration
- Returns:
The transformed data based on the implemented measure.
- Return type:
Union[List[MinScoreSample], List[MaxScoreSample]]