langtest.transform.fairness.MinGenderRougeScore#
- class MinGenderRougeScore#
- Bases: - BaseFairness- Subclass of BaseFairness that implements the minimum Rouge score. - alias_name#
- Alias names for the evaluation method. - Type:
- List[str] 
 
 - supported_tasks#
- Supported tasks for this evaluation method. - Type:
- List[str] 
 
 - transform(test
- str, data: List[Sample], params: Dict) -> List[MinScoreSample]: Transforms the input data into an output based on the minimum Rouge score. 
 - run(sample_list
- List[MinScoreSample], grouped_label, **kwargs) -> List[MinScoreSample]: Computes the minimum Rouge score for the given data. 
 - __init__()#
 - Methods - __init__()- async_run(sample_list, model, **kwargs)- Creates a task for the run method. - run(sample_list, grouped_label, **kwargs)- Computes the minimum Rouge score for the given data. - transform(test, data, params)- Transforms the data for evaluation based on the minimum Rouge score. - Attributes - test_types- class TestConfig#
- Bases: - dict- clear() None. Remove all items from D.#
 - copy() a shallow copy of D#
 - fromkeys(value=None, /)#
- Create a new dictionary with keys from iterable and values set to value. 
 - get(key, default=None, /)#
- Return the value for key if key is in the dictionary, else default. 
 - items() a set-like object providing a view on D's items#
 - keys() a set-like object providing a view on D's keys#
 - pop(k[, d]) v, remove specified key and return the corresponding value.#
- If the key is not found, return the default if given; otherwise, raise a KeyError. 
 - popitem()#
- Remove and return a (key, value) pair as a 2-tuple. - Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. 
 - setdefault(key, default=None, /)#
- Insert key with a value of default if key is not in the dictionary. - Return the value for key if key is in the dictionary, else default. 
 - update([E, ]**F) None. Update D from dict/iterable E and F.#
- If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] 
 - values() an object providing a view on D's values#
 
 - async classmethod async_run(sample_list: List[Sample], model: ModelAPI, **kwargs)#
- Creates a task for the run method. - Parameters:
- sample_list (List[Sample]) – The input data to be transformed. 
- model (ModelAPI) – The model to be used for the computation. 
 
- Returns:
- The task for the run method. 
- Return type:
- asyncio.Task 
 
 - class min_score#
- Bases: - dict- clear() None. Remove all items from D.#
 - copy() a shallow copy of D#
 - fromkeys(value=None, /)#
- Create a new dictionary with keys from iterable and values set to value. 
 - get(key, default=None, /)#
- Return the value for key if key is in the dictionary, else default. 
 - items() a set-like object providing a view on D's items#
 - keys() a set-like object providing a view on D's keys#
 - pop(k[, d]) v, remove specified key and return the corresponding value.#
- If the key is not found, return the default if given; otherwise, raise a KeyError. 
 - popitem()#
- Remove and return a (key, value) pair as a 2-tuple. - Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. 
 - setdefault(key, default=None, /)#
- Insert key with a value of default if key is not in the dictionary. - Return the value for key if key is in the dictionary, else default. 
 - update([E, ]**F) None. Update D from dict/iterable E and F.#
- If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] 
 - values() an object providing a view on D's values#
 
 - async static run(sample_list: List[MinScoreSample], grouped_label, **kwargs) List[MinScoreSample]#
- Computes the minimum Rouge score for the given data. - Parameters:
- sample_list (List[MinScoreSample]) – The input data samples. 
- grouped_label – A dictionary containing grouped labels where each key corresponds to a test case and the value is a tuple containing true labels and predicted labels. 
- **kwargs – Additional keyword arguments. 
 
- Returns:
- The evaluated data samples. 
- Return type:
- List[MinScoreSample] 
 
 - classmethod transform(test: str, data: List[Sample], params: Dict) List[MinScoreSample]#
- Transforms the data for evaluation based on the minimum Rouge score. - Parameters:
- test (str) – The test alias name. 
- data (List[Sample]) – The input data to be transformed. 
- params (Dict) – Parameters for tests configuration. 
 
- Returns:
- The transformed data samples based on the minimum Rouge score. 
- Return type:
- List[MinScoreSample] 
 
 
