langtest.transform.representation.BaseRepresentation#

class BaseRepresentation#

Bases: ABC

Abstract base class for implementing representation measures.

alias_name#

A name or list of names that identify the representation measure.

Type:

str

supported_tasks#

name of the supported task for the representation measure

Type:

List[str]

transform(data

List[Sample]) -> Any: Transforms the input data into an output

based on the implemented representation measure.
__init__()#

Methods

__init__()

async_run(sample_list, model, **kwargs)

Creates a task for the run method.

run(sample_list, model, **kwargs)

Computes the score for the given data.

transform(test, data, params)

Abstract method that implements the representation measure.

Attributes

class TestConfig#

Bases: dict

clear() None.  Remove all items from D.#
copy() a shallow copy of D#
fromkeys(value=None, /)#

Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)#

Return the value for key if key is in the dictionary, else default.

items() a set-like object providing a view on D's items#
keys() a set-like object providing a view on D's keys#
pop(k[, d]) v, remove specified key and return the corresponding value.#

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E, ]**F) None.  Update D from dict/iterable E and F.#

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values() an object providing a view on D's values#
async classmethod async_run(sample_list: List[Sample], model: ModelAPI, **kwargs)#

Creates a task for the run method.

Parameters:
  • sample_list (List[Sample]) – The input data to be evaluated for representation test.

  • model (ModelAPI) – The model to be used for the computation.

Returns:

The task for the run method.

Return type:

asyncio.Task

abstract async classmethod run(sample_list: List[Sample], model: ModelAPI, **kwargs) List[Sample]#

Computes the score for the given data.

Parameters:
  • sample_list (List[Sample]) – The input data to be transformed.

  • model (ModelAPI) – The model to be used for the computation.

Returns:

The transformed samples.

Return type:

List[Sample]

abstract classmethod transform(test: str, data: List[Sample], params: Dict) List[MinScoreQASample] | List[MinScoreSample]#

Abstract method that implements the representation measure.

Parameters:
  • test (str) – name of the test to perform

  • data (List[Sample]) – The input data to be transformed.

  • params (Dict) – parameters for tests configuration

Returns:

The transformed data based on the implemented representation measure.

Return type:

Any