langtest.utils.custom_types.sample.QASample#
- class QASample(*, original_question: str, original_context: str, options: str = None, test_type: str = None, perturbed_question: str = None, perturbed_context: str = None, expected_results: Result = None, actual_results: Result = None, dataset_name: str = None, category: str = None, state: str = None, task: str = 'question-answering', test_case: str = None, config: str = None, distance_result: float = None, eval_model: str | tuple = None, ran_pass: bool = None, metric_name: str = None, gender: str = None, loaded_fields: Dict[str, Any] = None, feedback: str = None)#
Bases:
BaseQASample
A class representing a sample for the question answering task.
- Inherits attributes from BaseQASample class.
- __init__(**data)#
Constructor method
Methods
__init__
(**data)Constructor method
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_orm
(obj)is_pass
()Checks if the sample has passed the evaluation.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])run
(model, **kwargs)Runs the original and perturbed sentences through the model
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])to_dict
()Returns the dictionary version of the sample.
transform
(func, params, prob[, perturbations])Transforms the original question and context using the specified function.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Attributes
- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns:
new model instance
- dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- is_pass() bool #
Checks if the sample has passed the evaluation.
- Returns:
True if the sample passed the evaluation, False otherwise.
- Return type:
bool
- json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- run(model, **kwargs)#
Runs the original and perturbed sentences through the model
- to_dict() Dict[str, Any] #
Returns the dictionary version of the sample.
- Returns:
The dictionary representation of the sample.
- Return type:
Dict[str, Any]
- transform(func: Callable, params: Dict, prob: float, perturbations=None, **kwargs)#
Transforms the original question and context using the specified function.
- Parameters:
func (function) – The transformation function to apply.
params (dict) – Additional parameters for the transformation function.
prob (float) – Probability of applying the transformation.
**kwargs – Additional keyword arguments for the transformation function.
- Returns:
None