langtest.transform.accuracy.LLMEval#
- class LLMEval#
Bases:
BaseAccuracy
Evaluation class for Language Model performance on question-answering tasks using the Language Model Metric (LLM).
- alias_name#
Alias names for the evaluation class, should include “llm_eval”.
- Type:
List[str]
- supported_tasks#
Supported tasks for evaluation, includes “question-answering”.
- Type:
List[str]
- transform(cls, test
str, y_true: List[Any], params: Dict) -> List[MinScoreSample]: Transforms evaluation parameters and initializes the evaluation model.
- run(cls, sample_list
List[MinScoreSample], *args, **kwargs) -> List[MinScoreSample]: Runs the evaluation on a list of samples using the Language Model Metric (LLM).
- __init__()#
Methods
__init__
()async_run
(sample_list, y_true, y_pred, **kwargs)Creates a task to run the accuracy measure.
run
(sample_list, y_true, y_pred, **kwargs)Runs the evaluation on a list of samples using the Language Model Metric (LLM).
transform
(test, y_true, params)Transforms evaluation parameters and initializes the evaluation model.
Attributes
eval_model
test_types
- async classmethod async_run(sample_list: List[MinScoreSample], y_true: List[Any], y_pred: List[Any], **kwargs)#
Creates a task to run the accuracy measure.
- Parameters:
sample_list (List[MinScoreSample]) – List of samples to be transformed.
y_true (List[Any]) – True values
y_pred (List[Any]) – Predicted values
- async static run(sample_list: List[MinScoreSample], y_true: List[Any], y_pred: List[Any], **kwargs)#
Runs the evaluation on a list of samples using the Language Model Metric (LLM).
- Parameters:
sample_list (List[MinScoreSample]) – List of MinScoreSample instances containing evaluation information.
y_true (List[Any]) – List of true values for the model’s predictions.
y_pred (List[Any]) – List of predicted values by the model.
X_test (Optional) – Additional keyword argument representing the test data.
progress_bar (Optional) – Additional keyword argument indicating whether to display a progress bar.
**kwargs – Additional keyword arguments.
- Returns:
List containing updated MinScoreSample instances after evaluation.
- Return type:
List[MinScoreSample]
- classmethod transform(test: str, y_true: List[Any], params: Dict) List[MinScoreSample] #
Transforms evaluation parameters and initializes the evaluation model.
- Parameters:
test (str) – The alias name for the evaluation class.
y_true (List[Any]) – List of true labels (not used in this method).
params (Dict) – Additional parameters for evaluation, including ‘model’, ‘hub’, and ‘min_score’.
- Returns:
List containing a MinScoreSample instance with evaluation information.
- Return type:
List[MinScoreSample]
- Raises:
AssertionError – If the ‘test’ parameter is not in the alias_name list.