langtest.utils.custom_types.sample.FactualitySample#
- class FactualitySample(*, article_sent: str, incorrect_sent: str, correct_sent: str, state: str = None, dataset_name: str = None, task: str = None, category: str = None, test_type: str = None, result: str = None, swapped_result: str = None, ran_pass: bool = None)#
Bases:
BaseModel
A class representing a sample for the Factuality task.
- article_sent#
The original article sentence.
- Type:
str
- incorrect_sent#
The incorrect version of the sentence.
- Type:
str
- correct_sent#
The correct version of the sentence.
- Type:
str
- state#
The state of the sample (e.g., ‘draft’, ‘final’).
- Type:
str, optional
- dataset_name#
The name of the dataset.
- Type:
str, optional
- task#
The task related to the sample.
- Type:
str, optional
- category#
The category of the sample.
- Type:
str, optional
- test_type#
The type of test conducted on the sample.
- Type:
str, optional
- result#
Stores the output when the correct summary is presented first.
- Type:
str, optional
- swapped_result#
Stores the output when the incorrect summary is presented first.
- Type:
str, optional
- to_dict()#
Convert the sample to a dictionary.
- is_pass()#
Check if the sample passes the evaluation.
- remove_punctuation(input_string)#
Remove punctuation from the input string.
- _is_eval()#
Internal method to evaluate the sample.
- run(model, **kwargs)#
Run the sample through a specified model.
- __init__(**data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
Methods
__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_orm
(obj)is_pass
()Check if the sample passes the evaluation.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])remove_punctuation
(input_string)Remove punctuation from the input string.
run
(model, **kwargs)Run the sample through a specified model.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])to_dict
()Convert the sample to a dictionary.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Attributes
ran_pass
- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns:
new model instance
- dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- is_pass()#
Check if the sample passes the evaluation.
- Returns:
True if the sample passes, False otherwise.
- Return type:
bool
- json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- remove_punctuation(input_string)#
Remove punctuation from the input string.
- Parameters:
input_string (str) – The input string with punctuation.
- Returns:
The input string with punctuation removed.
- Return type:
str
- run(model, **kwargs)#
Run the sample through a specified model.
- Parameters:
model – The machine learning model to run the sample through.
**kwargs – Additional keyword arguments.
- Returns:
True if the operation was successful.
- Return type:
bool
- to_dict() Dict[str, Any] #
Convert the sample to a dictionary.
- Returns:
A dictionary representation of the sample.
- Return type:
dict