langtest.utils.custom_types.sample.BaseSample#

class BaseSample(*, original: str = None, test_type: str = None, test_case: str = None, expected_results: Result = None, actual_results: Result = None, transformations: List[Transformation] = None, category: str = None, state: str = None, threshold: float = None, dataset_name: str = None)#

Bases: BaseModel

Helper object storing the original text, the perturbed one and the corresponding predictions for each of them.

The specificity here is that it is task-agnostic, one only needs to call access the is_pass property to assess whether the expected_results and the actual_results are the same, regardless the downstream task.langtest/utils/custom_types.py

This way, to support a new task one only needs to create a XXXOutput model, overload the __eq__ operator and add the new model to the Result type variable.

__init__(**data)#

Constructor method

Methods

__init__(**data)

Constructor method

construct([_fields_set])

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.

copy(*[, include, exclude, update, deep])

Duplicate a model, optionally choose which fields to include, exclude and change.

dict(*[, include, exclude, by_alias, ...])

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

from_orm(obj)

is_pass()

Checks if the sample passes based on the maximum score.

json(*[, include, exclude, by_alias, ...])

Generate a JSON representation of the model, include and exclude arguments as per dict().

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

sort_transformations(v)

Validator ensuring that transformations are in correct order

to_dict()

Returns the dict version of sample.

update_forward_refs(**localns)

Try to update ForwardRefs on fields based on this Model, globalns and localns.

validate(value)

Attributes

irrelevant_transformations

Retrieves the transformations that do not need to be taken into

relevant_transformations

Retrieves the transformations that need to be taken into account to realign original and test_case.

original

test_type

test_case

expected_results

actual_results

transformations

category

state

threshold

dataset_name

classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model#

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model#

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters:
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns:

new model instance

dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

property irrelevant_transformations: List[Transformation] | None#
Retrieves the transformations that do not need to be taken into

account to realign original and test_case.

Returns:

list of transformations which should be ignored

Return type:

Optional[List[Transformation]]

is_pass() bool#

Checks if the sample passes based on the maximum score.

json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode#

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

property relevant_transformations: List[Transformation] | None#

Retrieves the transformations that need to be taken into account to realign original and test_case.

Returns:

list of transformations which shouldn’t be ignored

Return type:

Optional[List[Transformation]]

classmethod sort_transformations(v)#

Validator ensuring that transformations are in correct order

to_dict() Dict[str, Any]#

Returns the dict version of sample.

classmethod update_forward_refs(**localns: Any) None#

Try to update ForwardRefs on fields based on this Model, globalns and localns.