langtest.transform.fairness.MinGenderF1Score#
- class MinGenderF1Score#
Bases:
BaseFairness
Subclass of BaseFairness that implements the minimum F1 score.
- alias_name#
The name “min_gender_f1_score” identifying the minimum F1 score.
- Type:
str
- transform(test
str, data: List[Sample], params: Dict) -> List[MinScoreSample]: Transforms the input data into an output based on the minimum F1 score.
- __init__()#
Methods
__init__
()async_run
(sample_list, model, **kwargs)Creates a task for the run method.
run
(sample_list, grouped_label, **kwargs)Computes the minimum F1 score for the given data.
transform
(test, data, params)Computes the minimum F1 score for the given data.
Attributes
supported_tasks
test_types
- async classmethod async_run(sample_list: List[Sample], model: ModelAPI, **kwargs)#
Creates a task for the run method.
- Parameters:
sample_list (List[Sample]) – The input data to be transformed.
model (ModelAPI) – The model to be used for the computation.
- Returns:
The task for the run method.
- Return type:
asyncio.Task
- async static run(sample_list: List[MinScoreSample], grouped_label, **kwargs) List[MinScoreSample] #
Computes the minimum F1 score for the given data.
- Parameters:
sample_list (List[MinScoreSample]) – The input data samples.
grouped_label – A dictionary containing grouped labels where each key corresponds to a test case and the value is a tuple containing true labels and predicted labels.
**kwargs – Additional keyword arguments.
- Returns:
The evaluated data samples.
- Return type:
List[MinScoreSample]
- classmethod transform(test: str, data: List[Sample], params: Dict) List[MinScoreSample] #
Computes the minimum F1 score for the given data.
- Parameters:
test (str) – The test alias name.
data (List[Sample]) – The input data to be transformed.
params (Dict) – Parameters for tests configuration.
- Returns:
The transformed data based on the minimum F1 score.
- Return type:
List[MinScoreSample]