langtest.transform.fairness.MinGenderF1Score#
- class MinGenderF1Score#
 Bases:
BaseFairnessSubclass of BaseFairness that implements the minimum F1 score.
- alias_name#
 The name “min_gender_f1_score” identifying the minimum F1 score.
- Type:
 str
- transform(test
 str, data: List[Sample], params: Dict) -> List[MinScoreSample]: Transforms the input data into an output based on the minimum F1 score.
- __init__()#
 
Methods
__init__()async_run(sample_list, model, **kwargs)Creates a task for the run method.
run(sample_list, grouped_label, **kwargs)Computes the minimum F1 score for the given data.
transform(test, data, params)Computes the minimum F1 score for the given data.
Attributes
supported_taskstest_types- class TestConfig#
 Bases:
dict- clear() None. Remove all items from D.#
 
- copy() a shallow copy of D#
 
- fromkeys(value=None, /)#
 Create a new dictionary with keys from iterable and values set to value.
- get(key, default=None, /)#
 Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items#
 
- keys() a set-like object providing a view on D's keys#
 
- pop(k[, d]) v, remove specified key and return the corresponding value.#
 If the key is not found, return the default if given; otherwise, raise a KeyError.
- popitem()#
 Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
- setdefault(key, default=None, /)#
 Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F.#
 If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values#
 
- async classmethod async_run(sample_list: List[Sample], model: ModelAPI, **kwargs)#
 Creates a task for the run method.
- Parameters:
 sample_list (List[Sample]) – The input data to be transformed.
model (ModelAPI) – The model to be used for the computation.
- Returns:
 The task for the run method.
- Return type:
 asyncio.Task
- class min_score#
 Bases:
dict- clear() None. Remove all items from D.#
 
- copy() a shallow copy of D#
 
- fromkeys(value=None, /)#
 Create a new dictionary with keys from iterable and values set to value.
- get(key, default=None, /)#
 Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items#
 
- keys() a set-like object providing a view on D's keys#
 
- pop(k[, d]) v, remove specified key and return the corresponding value.#
 If the key is not found, return the default if given; otherwise, raise a KeyError.
- popitem()#
 Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
- setdefault(key, default=None, /)#
 Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F.#
 If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values#
 
- async static run(sample_list: List[MinScoreSample], grouped_label, **kwargs) List[MinScoreSample]#
 Computes the minimum F1 score for the given data.
- Parameters:
 sample_list (List[MinScoreSample]) – The input data samples.
grouped_label – A dictionary containing grouped labels where each key corresponds to a test case and the value is a tuple containing true labels and predicted labels.
**kwargs – Additional keyword arguments.
- Returns:
 The evaluated data samples.
- Return type:
 List[MinScoreSample]
- classmethod transform(test: str, data: List[Sample], params: Dict) List[MinScoreSample]#
 Computes the minimum F1 score for the given data.
- Parameters:
 test (str) – The test alias name.
data (List[Sample]) – The input data to be transformed.
params (Dict) – Parameters for tests configuration.
- Returns:
 The transformed data based on the minimum F1 score.
- Return type:
 List[MinScoreSample]