langtest.modelhandler.jsl_modelhandler.PretrainedModelForQA#
- class PretrainedModelForQA(model: NLUPipeline | PretrainedPipeline | LightPipeline | PipelineModel)#
Bases:
PretrainedJSLModel,ModelAPIPretrained model for question answering tasks
- __init__(model: NLUPipeline | PretrainedPipeline | LightPipeline | PipelineModel)#
Constructor class
- Parameters:
model (LightPipeline) – Loaded SparkNLP LightPipeline for inference.
Methods
__init__(model)Constructor class
is_qa_annotator(model_instance)Check QA model instance is supported by langtest
load_model(path)Load the NER model into the model attribute.
predict(text, *args, **kwargs)Perform predictions with SparkNLP LightPipeline on the input text.
predict_raw(text)Perform predictions on the input text.
Attributes
hubmodel_registrytask- static is_qa_annotator(model_instance) bool#
Check QA model instance is supported by langtest
- classmethod load_model(path) NLUPipeline#
Load the NER model into the model attribute.
- Parameters:
path (str) – Path to pretrained local or NLP Models Hub SparkNLP model
- predict(text: str | Dict, *args, **kwargs) Dict[str, Any]#
Perform predictions with SparkNLP LightPipeline on the input text.
- Parameters:
text (str) – Input text to perform question answering on.
- Returns:
Question answering output from SparkNLP LightPipeline.
- Return type:
Dict[str, Any]
- predict_raw(text: str) List[str]#
Perform predictions on the input text.
- Parameters:
text (str) – Input text to perform question answering on.
- Returns:
Predictions as a list of strings.
- Return type:
List[str]